view pkg/mesh/strtree.go @ 5591:0011f50cf216 surveysperbottleneckid

Removed no longer used alternative api for surveys/ endpoint. As bottlenecks in the summary for SR imports are now identified by their id and no longer by the (not guarantied to be unique!) name, there is no longer the need to request survey data by the name+date tuple (which isn't reliable anyway). So the workaround was now reversed.
author Sascha Wilde <wilde@sha-bang.de>
date Wed, 06 Apr 2022 13:30:29 +0200
parents 5f47eeea988d
children b8da63027b48
line wrap: on
line source

// This is Free Software under GNU Affero General Public License v >= 3.0
// without warranty, see README.md and license for details.
//
// SPDX-License-Identifier: AGPL-3.0-or-later
// License-Filename: LICENSES/AGPL-3.0.txt
//
// Copyright (C) 2018 by via donau
//   – Österreichische Wasserstraßen-Gesellschaft mbH
// Software engineering by Intevation GmbH
//
// Author(s):
//  * Sascha L. Teichmann <sascha.teichmann@intevation.de>

package mesh

import (
	"bytes"
	"compress/gzip"
	"encoding/binary"
	"io"
	"math"
	"sort"

	"gemma.intevation.de/gemma/pkg/log"
)

// STRTreeDefaultEntries is the default number of children per node and leaf.
const STRTreeDefaultEntries = 8

// STRTree is a Sort Tile Recurse tree.
type STRTree struct {
	// Entries is the total number of entries.
	Entries int
	// tin is a reference to the TIN this tree is build from.
	tin *Tin
	// index is the internal tree representation.
	index []int32
	// bboxes are the bounding boxes used in nodes and leaves.
	bboxes []Box2D
}

// Vertical does a vertical cross cut from (x1, y1) to (x2, y2).
func (s *STRTree) Vertical(x1, y1, x2, y2 float64, fn func(*Triangle)) {
	box := Box2D{
		X1: math.Min(x1, x2),
		Y1: math.Min(y1, y2),
		X2: math.Max(x1, x2),
		Y2: math.Max(y1, y2),
	}

	// out of bounding box
	if box.X2 < s.tin.Min.X || s.tin.Max.X < box.X1 ||
		box.Y2 < s.tin.Min.Y || s.tin.Max.Y < box.Y1 {
		return
	}

	line := NewPlane2D(x1, y1, x2, y2)

	vertices := s.tin.Vertices

	stack := []int32{s.index[0]}

	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		if top > 0 { // node
			if b := s.bbox(top); b.Intersects(box) && b.IntersectsPlane(line) {
				n := s.index[top+1]
				stack = append(stack, s.index[top+2:top+2+n]...)
			}
		} else { // leaf
			top = -top - 1
			if b := s.bbox(top); !b.Intersects(box) || !b.IntersectsPlane(line) {
				continue
			}
			n := s.index[top+1]
			for _, idx := range s.index[top+2 : top+2+n] {
				ti := s.tin.Triangles[idx]
				t := Triangle{
					vertices[ti[0]],
					vertices[ti[1]],
					vertices[ti[2]],
				}
				v0 := line.Eval(t[0].X, t[0].Y)
				v1 := line.Eval(t[1].X, t[1].Y)
				v2 := line.Eval(t[2].X, t[2].Y)

				if onPlane(v0) || onPlane(v1) || onPlane(v2) ||
					sides(sides(sides(0, v0), v1), v2) == 3 {
					fn(&t)
				}
			}
		}
	}
}

// Min return the minimum vertex of the TIN this tree is build from.
func (s *STRTree) Min() Vertex { return s.tin.Min }

// Max return the maximum vertex of the TIN this tree is build from.
func (s *STRTree) Max() Vertex { return s.tin.Max }

// EPSG return the EPSF code of the TIN this tree is build from.
func (s *STRTree) EPSG() uint32 { return s.tin.EPSG }

// Value returns the Z Value for a given X/Y point.
// Second return value is false if the point is out of bound.
func (s *STRTree) Value(x, y float64) (float64, bool) {

	if len(s.index) == 0 {
		return 0, false
	}

	stack := []int32{s.index[0]}

	vertices := s.tin.Vertices

	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		if top > 0 { // node
			if s.bbox(top).Contains(x, y) {
				n := s.index[top+1]
				stack = append(stack, s.index[top+2:top+2+n]...)
			}
		} else { // leaf
			top = -top - 1
			if !s.bbox(top).Contains(x, y) {
				continue
			}
			n := s.index[top+1]
			for _, idx := range s.index[top+2 : top+2+n] {
				ti := s.tin.Triangles[idx]
				t := Triangle{
					vertices[ti[0]],
					vertices[ti[1]],
					vertices[ti[2]],
				}
				if t.Contains(x, y) {
					return t.Plane3D().Z(x, y), true
				}
			}
		}
	}
	return 0, false
}

// Build builds a tree for a given TIN.
func (s *STRTree) Build(t *Tin) {

	if s.Entries == 0 {
		s.Entries = STRTreeDefaultEntries
	}

	s.tin = t

	all := make([]int32, len(t.Triangles))

	for i := range all {
		all[i] = int32(i)
	}

	s.index = append(s.index, 0)

	root := s.build(all)

	s.index[0] = root
}

// BuildWithout builds a tree for a given TIN ignoring the triangles
// with the indices given in the remove map.
func (s *STRTree) BuildWithout(t *Tin, remove map[int32]struct{}) {

	if s.Entries == 0 {
		s.Entries = STRTreeDefaultEntries
	}

	s.tin = t

	all := make([]int32, 0, len(t.Triangles)-len(remove))

	for i := 0; i < len(t.Triangles); i++ {
		idx := int32(i)
		if _, found := remove[idx]; !found {
			all = append(all, idx)
		}
	}

	s.index = append(s.index, 0)

	root := s.build(all)

	s.index[0] = root
}

// Clip returns the indices of the triangles of the TIN
// which are not fully covered by the given polygon.
func (s *STRTree) Clip(p *Polygon) map[int32]struct{} {

	removed := make(map[int32]struct{})

	stack := []int32{s.index[0]}

	vertices := s.tin.Vertices

	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		if top > 0 { // node
			switch p.IntersectionBox2D(s.bbox(top)) {
			case IntersectionInside:
				// all triangles are inside polygon
			case IntersectionOutSide:
				// all triangles are outside polygon
				s.allTriangles(top, removed)
			default:
				// mixed bag
				n := s.index[top+1]
				stack = append(stack, s.index[top+2:top+2+n]...)
			}
		} else { // leaf
			top = -top - 1
			switch p.IntersectionBox2D(s.bbox(top)) {
			case IntersectionInside:
				// all triangles are inside polygon
			case IntersectionOutSide:
				// all triangles are outside polygon
				n := s.index[top+1]
				for _, idx := range s.index[top+2 : top+2+n] {
					removed[idx] = struct{}{}
				}
			default:
				n := s.index[top+1]
				for _, idx := range s.index[top+2 : top+2+n] {
					ti := s.tin.Triangles[idx]
					t := Triangle{
						vertices[ti[0]],
						vertices[ti[1]],
						vertices[ti[2]],
					}
					if p.IntersectionWithTriangle(&t) != IntersectionInside {
						removed[idx] = struct{}{}
					}
				}
			}
		}
	}

	return removed
}

func (s *STRTree) serializeIndex(w io.Writer) error {

	if err := binary.Write(w, binary.LittleEndian, int32(len(s.index))); err != nil {
		return err
	}

	var buf [binary.MaxVarintLen32]byte

	var last int32
	var written int

	for _, x := range s.index {
		delta := x - last
		n := binary.PutVarint(buf[:], int64(delta))
		for p := buf[:n]; len(p) > 0; p = p[n:] {
			var err error
			if n, err = w.Write(p); err != nil {
				return err
			}
			written += n
		}
		last = x
	}

	log.Infof("compressed index in bytes: %d %.2f (%d %.2f)\n",
		written,
		float64(written)/(1024*1024),
		4*len(s.index),
		float64(4*len(s.index))/(1024*1024),
	)

	return nil
}

func (s *STRTree) serializeBBoxes(w io.Writer) (rr error) {

	if err := binary.Write(w, binary.LittleEndian, int32(len(s.bboxes))); err != nil {
		return err
	}

	var err error

	write := func(v float64) {
		if err == nil {
			err = binary.Write(w, binary.LittleEndian, math.Float64bits(v))
		}
	}
	for _, box := range s.bboxes {
		write(box.X1)
		write(box.Y1)
		write(box.X2)
		write(box.Y2)
	}

	return err
}

// Bytes serializes this tree to a byte slice.
func (s *STRTree) Bytes() ([]byte, error) {

	var buf bytes.Buffer
	w, err := gzip.NewWriterLevel(&buf, gzip.BestSpeed)
	if err != nil {
		return nil, err
	}

	if err := s.tin.serialize(w); err != nil {
		return nil, err
	}

	if err := binary.Write(w, binary.LittleEndian, uint8(s.Entries)); err != nil {
		return nil, err
	}

	if err := s.serializeIndex(w); err != nil {
		return nil, err
	}

	if err := s.serializeBBoxes(w); err != nil {
		return nil, err
	}

	if err := w.Close(); err != nil {
		return nil, err
	}

	return buf.Bytes(), nil
}

func (s *STRTree) allTriangles(pos int32, tris map[int32]struct{}) {
	stack := []int32{pos}
	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]
		if top > 0 { // node
			n := s.index[top+1]
			stack = append(stack, s.index[top+2:top+2+n]...)
		} else { // leaf
			top = -top - 1
			n := s.index[top+1]
			for _, idx := range s.index[top+2 : top+2+n] {
				tris[idx] = struct{}{}
			}
		}
	}
}

func (s *STRTree) build(items []int32) int32 {
	sort.Slice(items, func(i, j int) bool {
		ti := s.tin.Triangles[items[i]]
		tj := s.tin.Triangles[items[j]]
		return s.tin.Vertices[ti[0]].X < s.tin.Vertices[tj[0]].X
	})

	P := int(math.Ceil(float64(len(items)) / float64(s.Entries)))
	S := int(math.Ceil(math.Sqrt(float64(P))))

	slices := s.strSplit(items, S)

	leaves := s.strJoin(
		slices, S,
		func(i, j int32) bool {
			ti := s.tin.Triangles[i]
			tj := s.tin.Triangles[j]
			return s.tin.Vertices[ti[0]].Y < s.tin.Vertices[tj[0]].Y
		},
		s.allocLeaf,
	)

	return s.buildNodes(leaves)
}

func (s *STRTree) buildNodes(items []int32) int32 {

	if len(items) <= s.Entries {
		return s.allocNode(items)
	}

	sort.Slice(items, func(i, j int) bool {
		return s.bbox(items[i]).X1 < s.bbox(items[j]).X1
	})

	P := int(math.Ceil(float64(len(items)) / float64(s.Entries)))
	S := int(math.Ceil(math.Sqrt(float64(P))))

	slices := s.strSplit(items, S)

	nodes := s.strJoin(
		slices, S,
		func(i, j int32) bool { return s.bbox(i).Y1 < s.bbox(j).Y1 },
		s.allocNode,
	)

	return s.buildNodes(nodes)
}

func (s *STRTree) bbox(idx int32) Box2D {
	if idx < 0 { // Don't care if leaf or node.
		idx = -idx - 1
	}
	return s.bboxes[s.index[idx]]
}

func (s *STRTree) strSplit(items []int32, S int) [][]int32 {
	sm := S * s.Entries
	slices := make([][]int32, S)
	for i := range slices {
		var n int
		if l := len(items); l < sm {
			n = l
		} else {
			n = sm
		}
		slices[i] = items[:n]
		items = items[n:]
	}
	return slices
}

func (s *STRTree) strJoin(
	slices [][]int32, S int,
	less func(int32, int32) bool,
	alloc func([]int32) int32,
) []int32 {
	nodes := make([]int32, 0, S*S)

	for _, slice := range slices {
		sort.Slice(slice, func(i, j int) bool {
			return less(slice[i], slice[j])
		})

		for len(slice) > 0 {
			var n int
			if l := len(slice); l >= s.Entries {
				n = s.Entries
			} else {
				n = l
			}
			nodes = append(nodes, alloc(slice[:n]))
			slice = slice[n:]
		}
	}
	return nodes
}

func (s *STRTree) allocNode(items []int32) int32 {
	pos := len(s.index)
	s.index = append(s.index, 0, int32(len(items)))
	s.index = append(s.index, items...)
	if len(items) > 0 {
		box := s.bbox(items[0])
		for i := 1; i < len(items); i++ {
			box = box.Union(s.bbox(items[i]))
		}
		s.index[pos] = int32(s.allocBBox(box))
	}
	return int32(pos)
}

func (s *STRTree) allocBBox(box Box2D) int {
	pos := len(s.bboxes)
	s.bboxes = append(s.bboxes, box)
	return pos
}

func (s *STRTree) allocLeaf(items []int32) int32 {
	pos := len(s.index)
	s.index = append(s.index, 0, int32(len(items)))
	s.index = append(s.index, items...)
	if len(items) > 0 {
		vertices := s.tin.Vertices
		ti := s.tin.Triangles[items[0]]
		t := Triangle{
			vertices[ti[0]],
			vertices[ti[1]],
			vertices[ti[2]],
		}
		box := t.BBox()
		for i := 1; i < len(items); i++ {
			it := items[i]
			ti := s.tin.Triangles[it]
			t := Triangle{
				vertices[ti[0]],
				vertices[ti[1]],
				vertices[ti[2]],
			}
			box = box.Union(t.BBox())
		}
		s.index[pos] = int32(s.allocBBox(box))
	}
	return int32(-(pos + 1))
}