view pkg/octree/tree.go @ 2006:35acb7f9ae0c

Do anything else before expectedly failing role creation Creating roles during database setup expectedly fails in case there already is another gemma database in the cluster. Doing it at the end of the transaction ensures it does not hide errors in other commands in the script. In passing, add the default admin via the designated view to ensure it will become a correctly set up application user.
author Tom Gottfried <tom@intevation.de>
date Thu, 24 Jan 2019 17:23:43 +0100
parents fe1aa62195c2
children a1e751c08c56
line wrap: on
line source

// This is Free Software under GNU Affero General Public License v >= 3.0
// without warranty, see README.md and license for details.
//
// SPDX-License-Identifier: AGPL-3.0-or-later
// License-Filename: LICENSES/AGPL-3.0.txt
//
// Copyright (C) 2018 by via donau
//   – Österreichische Wasserstraßen-Gesellschaft mbH
// Software engineering by Intevation GmbH
//
// Author(s):
//  * Sascha L. Teichmann <sascha.teichmann@intevation.de>

package octree

import (
	"math"
)

// Tree is an Octree holding triangles.
type Tree struct {
	// EPSG is the projection.
	EPSG uint32

	vertices  []Vertex
	triangles [][]int32
	index     []int32

	// Min is the lower left corner of the bbox.
	Min Vertex
	// Max is the upper right corner of the bbox.
	Max Vertex
}

var scale = [4][4]float64{
	{0.0, 0.0, 0.5, 0.5},
	{0.5, 0.0, 1.0, 0.5},
	{0.0, 0.5, 0.5, 1.0},
	{0.5, 0.5, 1.0, 1.0},
}

// Vertical does a vertical cross cut from (x1, y1) to (x2, y2).
func (ot *Tree) Vertical(x1, y1, x2, y2 float64, fn func(*Triangle)) {

	box := Box2D{
		X1: math.Min(x1, x2),
		Y1: math.Min(y1, y2),
		X2: math.Max(x1, x2),
		Y2: math.Max(y1, y2),
	}

	// out of bounding box
	if box.X2 < ot.Min.X || ot.Max.X < box.X1 ||
		box.Y2 < ot.Min.Y || ot.Max.Y < box.Y1 {
		return
	}

	line := NewPlane2D(x1, y1, x2, y2)

	type frame struct {
		pos int32
		Box2D
	}

	dupes := map[int32]struct{}{}

	all := Box2D{ot.Min.X, ot.Min.Y, ot.Max.X, ot.Max.Y}
	//log.Printf("area: %f\n", (box.x2-box.x1)*(box.y2-box.y1))
	//log.Printf("all: %f\n", (all.x2-all.x1)*(all.y2-all.y1))

	stack := []frame{{1, all}}

	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		if top.pos > 0 { // node
			if index := ot.index[top.pos:]; len(index) > 7 {
				for i := 0; i < 4; i++ {
					a := index[i]
					b := index[i+4]
					if a == 0 && b == 0 {
						continue
					}
					dx := top.X2 - top.X1
					dy := top.Y2 - top.Y1
					nbox := Box2D{
						dx*scale[i][0] + top.X1,
						dy*scale[i][1] + top.Y1,
						dx*scale[i][2] + top.X1,
						dy*scale[i][3] + top.Y1,
					}
					if nbox.Intersects(box) && nbox.IntersectsPlane(line) {
						if a != 0 {
							stack = append(stack, frame{a, nbox})
						}
						if b != 0 {
							stack = append(stack, frame{b, nbox})
						}
					}
				}
			}
		} else { // leaf
			pos := -top.pos - 1
			n := ot.index[pos]
			indices := ot.index[pos+1 : pos+1+n]

			for _, idx := range indices {
				if _, found := dupes[idx]; found {
					continue
				}
				tri := ot.triangles[idx]
				t := Triangle{
					ot.vertices[tri[0]],
					ot.vertices[tri[1]],
					ot.vertices[tri[2]],
				}

				v0 := line.Eval(t[0].X, t[0].Y)
				v1 := line.Eval(t[1].X, t[1].Y)
				v2 := line.Eval(t[2].X, t[2].Y)

				if onPlane(v0) || onPlane(v1) || onPlane(v2) ||
					sides(sides(sides(0, v0), v1), v2) == 3 {
					fn(&t)
				}
				dupes[idx] = struct{}{}
			}
		}
	}
}

// Horizontal does a horizontal cross cut.
func (ot *Tree) Horizontal(h float64, fn func(*Triangle)) {

	if h < ot.Min.Z || ot.Max.Z < h {
		return
	}

	type frame struct {
		pos int32
		min float64
		max float64
	}

	dupes := map[int32]struct{}{}

	stack := []frame{{1, ot.Min.Z, ot.Max.Z}}

	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		pos := top.pos
		if pos == 0 {
			continue
		}
		min, max := top.min, top.max

		if pos > 0 { // node
			if mid := (max-min)*0.5 + min; h >= mid {
				pos += 4 // nodes with z-bit set
				min = mid
			} else {
				max = mid
			}
			if index := ot.index[pos:]; len(index) > 3 {
				stack = append(stack,
					frame{index[0], min, max},
					frame{index[1], min, max},
					frame{index[2], min, max},
					frame{index[3], min, max})
			}
		} else { // leaf
			pos = -pos - 1
			n := ot.index[pos]
			//log.Printf("%d %d %d\n", pos, n, len(ot.index))
			indices := ot.index[pos+1 : pos+1+n]

			for _, idx := range indices {
				if _, found := dupes[idx]; found {
					continue
				}
				tri := ot.triangles[idx]
				t := Triangle{
					ot.vertices[tri[0]],
					ot.vertices[tri[1]],
					ot.vertices[tri[2]],
				}

				if !(math.Min(t[0].Z, math.Min(t[1].Z, t[2].Z)) > h ||
					math.Max(t[0].Z, math.Max(t[1].Z, t[2].Z)) < h) {
					dupes[idx] = struct{}{}
					fn(&t)
				}
			}
		}
	}
}