view pkg/mesh/tin.go @ 5718:3d497077f888 uploadwg

Implemented direct file upload as alternative import method for WG. For testing and data corrections it is useful to be able to import waterway gauges data directly by uploading a xml file.
author Sascha Wilde <wilde@sha-bang.de>
date Thu, 18 Apr 2024 19:23:19 +0200
parents 6270951dda28
children
line wrap: on
line source

// This is Free Software under GNU Affero General Public License v >= 3.0
// without warranty, see README.md and license for details.
//
// SPDX-License-Identifier: AGPL-3.0-or-later
// License-Filename: LICENSES/AGPL-3.0.txt
//
// Copyright (C) 2018 by via donau
//   – Österreichische Wasserstraßen-Gesellschaft mbH
// Software engineering by Intevation GmbH
//
// Author(s):
//  * Sascha L. Teichmann <sascha.teichmann@intevation.de>

package mesh

import (
	"bytes"
	"encoding/binary"
	"errors"
	"fmt"
	"math"

	"gemma.intevation.de/gemma/pkg/log"
	"gemma.intevation.de/gemma/pkg/models"
	"gemma.intevation.de/gemma/pkg/wkb"
)

var (
	errNoByteSlice   = errors.New("not a byte slice")
	errTooLessPoints = errors.New("too less points")
)

// Tin stores a mesh of triangles with common vertices.
type Tin struct {
	// EPSG holds the projection.
	EPSG uint32
	// Vertices are the shared vertices.
	Vertices []Vertex
	// Triangles are the triangles.
	Triangles [][]int32

	// Min is the lower left corner of the bbox.
	Min Vertex
	// Max is the upper right corner of the bbox.
	Max Vertex
}

// Clip returns a map of ids of triangles which are not inside the
// given polygon.
func (t *Tin) Clip(polygon *Polygon) map[int32]struct{} {
	var tree STRTree
	tree.Build(t)
	return tree.Clip(polygon)
}

// FromWKB constructs the TIN from a WKB representation.
// Shared vertices are identified and referenced by the
// same index.
func (t *Tin) FromWKB(data []byte) error {
	log.Infof("data length %d\n", len(data))

	r := bytes.NewReader(data)

	endian, err := r.ReadByte()

	var order binary.ByteOrder

	switch {
	case err != nil:
		return err
	case endian == wkb.NDR:
		order = binary.LittleEndian
	case endian == wkb.XDR:
		order = binary.BigEndian
	default:
		return fmt.Errorf("unknown byte order %x", endian)
	}

	var geomType uint32
	err = binary.Read(r, order, &geomType)

	switch {
	case err != nil:
		return err
	case geomType != wkb.TinZ:
		return fmt.Errorf("unknown geometry type %x", geomType)
	}

	var num uint32
	if err = binary.Read(r, order, &num); err != nil {
		return err
	}

	vertices := make([]Vertex, 0, 100000)

	var v Vertex

	v2i := make(map[Vertex]int32, 100000)

	var indexPool []int32

	allocIndices := func() []int32 {
		if len(indexPool) == 0 {
			indexPool = make([]int32, 3*8*1024)
		}
		ids := indexPool[:3]
		indexPool = indexPool[3:]
		return ids
	}

	var triangles [][]int32

	min := Vertex{math.MaxFloat64, math.MaxFloat64, math.MaxFloat64}
	max := Vertex{-math.MaxFloat64, -math.MaxFloat64, -math.MaxFloat64}

	for i := uint32(0); i < num; i++ {

		endian, err = r.ReadByte()
		switch {
		case err != nil:
			return err
		case endian == wkb.NDR:
			order = binary.LittleEndian
		case endian == wkb.XDR:
			order = binary.BigEndian
		default:
			return fmt.Errorf("unknown byte order %x", endian)
		}

		err = binary.Read(r, order, &geomType)
		switch {
		case err != nil:
			return err
		case geomType != wkb.TriangleZ:
			return fmt.Errorf("unknown geometry type %d", geomType)
		}

		var rings uint32
		if err = binary.Read(r, order, &rings); err != nil {
			return err
		}
		triangle := allocIndices()

		for ring := uint32(0); ring < rings; ring++ {
			var npoints uint32
			if err = binary.Read(r, order, &npoints); err != nil {
				return err
			}

			if npoints < 3 {
				return errTooLessPoints
			}

			for p := uint32(0); p < npoints; p++ {
				var x, y, z uint64
				for _, addr := range []*uint64{&x, &y, &z} {
					if err = binary.Read(r, order, addr); err != nil {
						return err
					}
				}
				if p >= 3 || ring >= 1 {
					// Don't store the forth point.
					continue
				}
				// Do this conversion later to spare reflect calls
				// and allocs in binary.Read.
				v.X = math.Float64frombits(x)
				v.Y = math.Float64frombits(y)
				v.Z = math.Float64frombits(z)
				idx, found := v2i[v]
				if !found {
					idx = int32(len(vertices))
					v2i[v] = idx
					vertices = append(vertices, v)
					min.Minimize(v)
					max.Maximize(v)
				}
				triangle[p] = idx
			}
		}
		triangles = append(triangles, triangle)
	}

	log.Infof("bbox: [[%f, %f], [%f, %f]]\n",
		min.X, min.Y, max.X, max.Y)

	*t = Tin{
		EPSG:      models.WGS84,
		Vertices:  vertices,
		Triangles: triangles,
		Min:       min,
		Max:       max,
	}

	return nil
}

// Scan implements the sql.Scanner interface.
func (t *Tin) Scan(raw any) error {
	if raw == nil {
		return nil
	}
	data, ok := raw.([]byte)
	if !ok {
		return errNoByteSlice
	}
	return t.FromWKB(data)
}