view pkg/octree/builder.go @ 3678:8f58851927c0

client: make layer factory only return new layer config for individual maps instead of each time it is invoked. The purpose of the factory was to support multiple maps with individual layers. But returning a new config each time it is invoked leads to bugs that rely on the layer's state. Now this factory reuses the same objects it created before, per map.
author Markus Kottlaender <markus@intevation.de>
date Mon, 17 Jun 2019 17:31:35 +0200
parents 1ec4c5633eb6
children 4233570de212
line wrap: on
line source

// This is Free Software under GNU Affero General Public License v >= 3.0
// without warranty, see README.md and license for details.
//
// SPDX-License-Identifier: AGPL-3.0-or-later
// License-Filename: LICENSES/AGPL-3.0.txt
//
// Copyright (C) 2018 by via donau
//   – Österreichische Wasserstraßen-Gesellschaft mbH
// Software engineering by Intevation GmbH
//
// Author(s):
//  * Sascha L. Teichmann <sascha.teichmann@intevation.de>

package octree

import (
	"bytes"
	"encoding/binary"
	"io"
	"log"
	"runtime"
	"sync"
	"sync/atomic"

	"github.com/golang/snappy"
)

// Builder is used to turn a TIN into an Octree.
type Builder struct {
	t      *Tin
	nodes  int
	leaves int
	index  []int32

	mu sync.Mutex
}

type buildStep func(chan buildStep)

var cubes = [8][2]Vertex{
	makeCube(0),
	makeCube(1),
	makeCube(2),
	makeCube(3),
	makeCube(4),
	makeCube(5),
	makeCube(6),
	makeCube(7),
}

func makeCube(i int) [2]Vertex {
	var d Vertex
	if i&1 == 1 {
		d.X = 0.5
	}
	if i&2 == 2 {
		d.Y = 0.5
	}
	if i&4 == 4 {
		d.Z = 0.5
	}
	return [2]Vertex{
		Vertex{0.0, 0.0, 0.0}.Add(d),
		Vertex{0.5, 0.5, 0.5}.Add(d),
	}
}

// NewBuilder creates a new Builder for a TIN.
func NewBuilder(t *Tin) *Builder {
	return &Builder{t: t}
}

// Build builds the Octree.
func (tb *Builder) Build(removed map[int32]struct{}) {

	var triangles []int32

	if len(removed) > 0 {
		triangles = make([]int32, len(tb.t.Triangles)-len(removed))
		idx := 0
		for i := range tb.t.Triangles {
			if _, found := removed[int32(i)]; !found {
				triangles[idx] = int32(i)
				idx++
			}
		}
	} else {
		triangles = make([]int32, len(tb.t.Triangles))
		for i := range triangles {
			triangles[i] = int32(i)
		}
	}

	n := runtime.NumCPU()

	steps := make(chan buildStep)

	var wg sync.WaitGroup
	for i := 0; i < n; i++ {
		wg.Add(1)
		go func() {
			defer wg.Done()
			for step := range steps {
				step(steps)
			}
		}()
	}

	tb.index = append(tb.index, 0)

	root := func(int32) {
		close(steps)
	}

	steps <- tb.buildConcurrent(
		triangles,
		tb.t.Min, tb.t.Max,
		0,
		root)

	wg.Wait()

	/*
		tb.buildRecursive(triangles, tb.t.Min, tb.t.Max, 0)
	*/
	tb.index[0] = int32(len(tb.index))
	log.Printf("info: num nodes: %d\n", tb.index[0])
	log.Printf("info: nodes: %d leaves: %d index %d\n",
		tb.nodes, tb.leaves, tb.index[0])
}

func (tb *Builder) buildConcurrent(
	triangles []int32,
	min, max Vertex,
	depth int,
	parent func(int32),
) buildStep {

	return func(steps chan buildStep) {

		// none concurrent for small parts.
		if len(triangles) <= 1024 || depth > 8 {
			parent(tb.buildRecursive(triangles, min, max, depth))
			return
		}

		bbox := Interpolate(min, max)

		bboxes := make([][2]Vertex, len(cubes))

		for i := range cubes {
			bboxes[i] = [2]Vertex{
				bbox(cubes[i][0]),
				bbox(cubes[i][1]),
			}
		}

		var quandrants [8][]int32

		for _, tri := range triangles {
			triangle := tb.t.Triangles[tri]
			v0 := tb.t.Vertices[triangle[0]]
			v1 := tb.t.Vertices[triangle[1]]
			v2 := tb.t.Vertices[triangle[2]]

			l := v0
			l.Minimize(v1)
			l.Minimize(v2)

			h := v0
			h.Maximize(v1)
			h.Maximize(v2)

			for i := range bboxes {
				if !(h.Less(bboxes[i][0]) || bboxes[i][1].Less(l)) {
					quandrants[i] = append(quandrants[i], tri)
				}
			}
		}

		used := new(int32)
		for i := range quandrants {
			if len(quandrants[i]) > 0 {
				*used++
			}
		}

		pos := tb.allocNode()

		for i := range quandrants {
			if len(quandrants[i]) > 0 {
				j := int32(i)
				parent := func(v int32) {
					tb.index[pos+j] = v
					if atomic.AddInt32(used, -1) == 0 {
						parent(pos)
					}
				}
				step := tb.buildConcurrent(
					quandrants[i],
					bboxes[i][0], bboxes[i][1],
					depth+1,
					parent)
				select {
				case steps <- step:
				default:
					// all slots busy -> execute directly.
					step(steps)
				}
			}
		}
	}
}

func (tb *Builder) allocNode() int32 {
	tb.mu.Lock()
	pos := int32(len(tb.index))
	tb.index = append(tb.index,
		0, 0, 0, 0,
		0, 0, 0, 0)
	tb.nodes++
	tb.mu.Unlock()
	return pos
}

func (tb *Builder) buildRecursive(
	triangles []int32,
	min, max Vertex,
	depth int,
) int32 {
	if len(triangles) <= 16 || depth > 8 {
		tb.mu.Lock()
		pos := len(tb.index)
		tb.index = append(tb.index, int32(len(triangles)))
		tb.index = append(tb.index, triangles...)
		//log.Printf("leaf entries: %d (%d)\n", len(triangles), depth)
		tb.leaves++
		tb.mu.Unlock()
		return int32(-(pos + 1))
	}

	bbox := Interpolate(min, max)

	bboxes := make([][2]Vertex, len(cubes))

	for i := range cubes {
		bboxes[i] = [2]Vertex{
			bbox(cubes[i][0]),
			bbox(cubes[i][1]),
		}
	}

	var quandrants [8][]int32

	for _, tri := range triangles {
		triangle := tb.t.Triangles[tri]
		v0 := tb.t.Vertices[triangle[0]]
		v1 := tb.t.Vertices[triangle[1]]
		v2 := tb.t.Vertices[triangle[2]]

		l := v0
		l.Minimize(v1)
		l.Minimize(v2)

		h := v0
		h.Maximize(v1)
		h.Maximize(v2)

		for i := range bboxes {
			if !(h.Less(bboxes[i][0]) || bboxes[i][1].Less(l)) {
				quandrants[i] = append(quandrants[i], tri)
			}
		}
	}

	pos := tb.allocNode()

	for i := range quandrants {
		if len(quandrants[i]) > 0 {
			child := tb.buildRecursive(
				quandrants[i],
				bboxes[i][0], bboxes[i][1],
				depth+1)
			tb.index[pos+int32(i)] = child
		}
	}

	return pos
}

func (tb *Builder) serialize(w io.Writer) error {
	var buf [binary.MaxVarintLen32]byte

	if err := binary.Write(w, binary.LittleEndian, tb.index[0]); err != nil {
		return err
	}

	var last int32
	var written int

	for _, x := range tb.index[1:] {
		delta := x - last
		n := binary.PutVarint(buf[:], int64(delta))
		for p := buf[:n]; len(p) > 0; p = p[n:] {
			var err error
			if n, err = w.Write(p); err != nil {
				return err
			}
			written += n
		}

		last = x
	}
	log.Printf("info: compressed octree index in bytes: %d (%d)\n",
		written, 4*len(tb.index))

	return nil
}

func (tb *Builder) writeTo(w io.Writer) error {
	out := snappy.NewBufferedWriter(w)
	if err := tb.t.serialize(out); err != nil {
		return err
	}
	if err := tb.serialize(out); err != nil {
		return err
	}
	return out.Flush()
}

// Bytes serializes an Octree into a byte slice.
func (tb *Builder) Bytes() ([]byte, error) {
	var buf bytes.Buffer
	if err := tb.writeTo(&buf); err != nil {
		return nil, err
	}
	return buf.Bytes(), nil
}

// Tree returns an Octree from the Builder.
func (tb *Builder) Tree() *Tree {
	return &Tree{
		EPSG:      tb.t.EPSG,
		vertices:  tb.t.Vertices,
		triangles: tb.t.Triangles,
		index:     tb.index,
		Min:       tb.t.Min,
		Max:       tb.t.Max,
	}
}