view pkg/octree/tree.go @ 2624:9dbaf69c7a66

Improve geoserver config to better calculate bounding boxes * Disable the use of estimated extents for the postgis storage configuration for geoserver, which is set via the gemma middleware. This way we are able to get better bounding boxes for many layers where the postgis function `ST_EstimatedExtent()` would be far off.
author Bernhard Reiter <bernhard@intevation.de>
date Wed, 13 Mar 2019 16:18:39 +0100
parents 7686c7c23506
children a6c671abbc35
line wrap: on
line source

// This is Free Software under GNU Affero General Public License v >= 3.0
// without warranty, see README.md and license for details.
//
// SPDX-License-Identifier: AGPL-3.0-or-later
// License-Filename: LICENSES/AGPL-3.0.txt
//
// Copyright (C) 2018 by via donau
//   – Österreichische Wasserstraßen-Gesellschaft mbH
// Software engineering by Intevation GmbH
//
// Author(s):
//  * Sascha L. Teichmann <sascha.teichmann@intevation.de>

package octree

import (
	"math"
)

// Tree is an Octree holding triangles.
type Tree struct {
	// EPSG is the projection.
	EPSG uint32

	vertices  []Vertex
	triangles [][]int32
	index     []int32

	// Min is the lower left corner of the bbox.
	Min Vertex
	// Max is the upper right corner of the bbox.
	Max Vertex
}

type boxFrame struct {
	pos int32
	Box2D
}

func (ot *Tree) Vertices() []Vertex {
	return ot.vertices
}

var scale = [4][4]float64{
	{0.0, 0.0, 0.5, 0.5},
	{0.5, 0.0, 1.0, 0.5},
	{0.0, 0.5, 0.5, 1.0},
	{0.5, 0.5, 1.0, 1.0},
}

func (ot *Tree) Value(x, y float64) (float64, bool) {

	// out of bounding box
	if x < ot.Min.X || ot.Max.X < x ||
		y < ot.Min.Y || ot.Max.Y < y {
		return 0, false
	}

	all := Box2D{ot.Min.X, ot.Min.Y, ot.Max.X, ot.Max.Y}

	stack := []boxFrame{{1, all}}

	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		if top.pos > 0 { // node
			if index := ot.index[top.pos:]; len(index) > 7 {
				for i := 0; i < 4; i++ {
					a := index[i]
					b := index[i+4]
					if a == 0 && b == 0 {
						continue
					}
					dx := top.X2 - top.X1
					dy := top.Y2 - top.Y1
					nbox := Box2D{
						dx*scale[i][0] + top.X1,
						dy*scale[i][1] + top.Y1,
						dx*scale[i][2] + top.X1,
						dy*scale[i][3] + top.Y1,
					}
					if nbox.Contains(x, y) {
						if a != 0 {
							stack = append(stack, boxFrame{a, nbox})
						}
						if b != 0 {
							stack = append(stack, boxFrame{b, nbox})
						}
						break
					}
				}
			}
		} else { // leaf
			pos := -top.pos - 1
			n := ot.index[pos]
			indices := ot.index[pos+1 : pos+1+n]

			for _, idx := range indices {
				tri := ot.triangles[idx]
				t := Triangle{
					ot.vertices[tri[0]],
					ot.vertices[tri[1]],
					ot.vertices[tri[2]],
				}
				if t.Contains(x, y) {
					return t.Plane3D().Z(x, y), true
				}
			}
		}
	}

	return 0, false
}

// Vertical does a vertical cross cut from (x1, y1) to (x2, y2).
func (ot *Tree) Vertical(x1, y1, x2, y2 float64, fn func(*Triangle)) {

	box := Box2D{
		X1: math.Min(x1, x2),
		Y1: math.Min(y1, y2),
		X2: math.Max(x1, x2),
		Y2: math.Max(y1, y2),
	}

	// out of bounding box
	if box.X2 < ot.Min.X || ot.Max.X < box.X1 ||
		box.Y2 < ot.Min.Y || ot.Max.Y < box.Y1 {
		return
	}

	line := NewPlane2D(x1, y1, x2, y2)

	dupes := map[int32]struct{}{}

	all := Box2D{ot.Min.X, ot.Min.Y, ot.Max.X, ot.Max.Y}
	//log.Printf("area: %f\n", (box.x2-box.x1)*(box.y2-box.y1))
	//log.Printf("all: %f\n", (all.x2-all.x1)*(all.y2-all.y1))

	stack := []boxFrame{{1, all}}

	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		if top.pos > 0 { // node
			if index := ot.index[top.pos:]; len(index) > 7 {
				for i := 0; i < 4; i++ {
					a := index[i]
					b := index[i+4]
					if a == 0 && b == 0 {
						continue
					}
					dx := top.X2 - top.X1
					dy := top.Y2 - top.Y1
					nbox := Box2D{
						dx*scale[i][0] + top.X1,
						dy*scale[i][1] + top.Y1,
						dx*scale[i][2] + top.X1,
						dy*scale[i][3] + top.Y1,
					}
					if nbox.Intersects(box) && nbox.IntersectsPlane(line) {
						if a != 0 {
							stack = append(stack, boxFrame{a, nbox})
						}
						if b != 0 {
							stack = append(stack, boxFrame{b, nbox})
						}
					}
				}
			}
		} else { // leaf
			pos := -top.pos - 1
			n := ot.index[pos]
			indices := ot.index[pos+1 : pos+1+n]

			for _, idx := range indices {
				if _, found := dupes[idx]; found {
					continue
				}
				tri := ot.triangles[idx]
				t := Triangle{
					ot.vertices[tri[0]],
					ot.vertices[tri[1]],
					ot.vertices[tri[2]],
				}

				v0 := line.Eval(t[0].X, t[0].Y)
				v1 := line.Eval(t[1].X, t[1].Y)
				v2 := line.Eval(t[2].X, t[2].Y)

				if onPlane(v0) || onPlane(v1) || onPlane(v2) ||
					sides(sides(sides(0, v0), v1), v2) == 3 {
					fn(&t)
				}
				dupes[idx] = struct{}{}
			}
		}
	}
}

// Horizontal does a horizontal cross cut.
func (ot *Tree) Horizontal(h float64, fn func(*Triangle)) {

	if h < ot.Min.Z || ot.Max.Z < h {
		return
	}

	type frame struct {
		pos int32
		min float64
		max float64
	}

	dupes := map[int32]struct{}{}

	stack := []frame{{1, ot.Min.Z, ot.Max.Z}}

	for len(stack) > 0 {
		top := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		pos := top.pos
		if pos == 0 {
			continue
		}
		min, max := top.min, top.max

		if pos > 0 { // node
			if mid := (max-min)*0.5 + min; h >= mid {
				pos += 4 // nodes with z-bit set
				min = mid
			} else {
				max = mid
			}
			if pos < int32(len(ot.index)) {
				if index := ot.index[pos:]; len(index) > 3 {
					stack = append(stack,
						frame{index[0], min, max},
						frame{index[1], min, max},
						frame{index[2], min, max},
						frame{index[3], min, max})
				}
			}
		} else { // leaf
			pos = -pos - 1
			n := ot.index[pos]
			//log.Printf("%d %d %d\n", pos, n, len(ot.index))
			indices := ot.index[pos+1 : pos+1+n]

			for _, idx := range indices {
				if _, found := dupes[idx]; found {
					continue
				}
				tri := ot.triangles[idx]
				t := Triangle{
					ot.vertices[tri[0]],
					ot.vertices[tri[1]],
					ot.vertices[tri[2]],
				}

				if !(math.Min(t[0].Z, math.Min(t[1].Z, t[2].Z)) > h ||
					math.Max(t[0].Z, math.Max(t[1].Z, t[2].Z)) < h) {
					dupes[idx] = struct{}{}
					fn(&t)
				}
			}
		}
	}
}

func (ot *Tree) Diff(other *Tree) PointMap {

	firstVs, secondVs := ot.Vertices(), other.Vertices()

	result := make(PointMap, len(firstVs)+len(secondVs))

	sliceWork(
		firstVs,
		result,
		func(slice []Vertex, turn func([]Vertex) []Vertex) {
			p := turn(nil)
			for i := range slice {
				v := &slice[i]
				if z, found := other.Value(v.X, v.Y); found {
					p = append(p, Vertex{v.X, v.Y, v.Z - z})
					if len(p) == cap(p) {
						p = turn(p)
					}
				}
			}
			if len(p) > 0 {
				turn(p)
			}
		})

	sliceWork(
		secondVs,
		result,
		func(
			slice []Vertex, turn func([]Vertex) []Vertex) {
			p := turn(nil)
			for i := range slice {
				v := &slice[i]
				if z, found := ot.Value(v.X, v.Y); found {
					p = append(p, Vertex{v.X, v.Y, z - v.Z})
					if len(p) == cap(p) {
						p = turn(p)
					}
				}
			}
			if len(p) > 0 {
				turn(p)
			}
		})

	return result
}