view pkg/octree/triangulation.go @ 4606:dfe9cde6a20c geoserver_sql_views

Reflect database model changes for SQL views in backend In principle, we could use many datasources with different database schemas, but this would imply changing GeoServer initialization, service filtering, endpoints and eventually more. Since we do not need it, just hard-code the schema name as a constant.
author Tom Gottfried <tom@intevation.de>
date Thu, 05 Sep 2019 12:23:31 +0200
parents ec86a7155377
children
line wrap: on
line source

// Copyright (C) 2018 Michael Fogleman
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

package octree

import (
	"fmt"
	"log"
	"math"

	"gonum.org/v1/gonum/stat"
)

type Triangulation struct {
	Points     []Vertex
	ConvexHull []Vertex
	Triangles  []int32
	Halfedges  []int32
}

// Triangulate returns a Delaunay triangulation of the provided points.
func Triangulate(points []Vertex) (*Triangulation, error) {
	t := newTriangulator(points)
	err := t.triangulate()
	return &Triangulation{points, t.convexHull(), t.triangles, t.halfedges}, err
}

func (t *Triangulation) EstimateTooLong() float64 {

	num := len(t.Triangles) / 3

	lengths := make([]float64, 0, num)

	points := t.Points

tris:
	for i := 0; i < num; i++ {
		idx := i * 3
		var max float64
		vs := t.Triangles[idx : idx+3]
		for j, vj := range vs {
			if t.Halfedges[idx+j] < 0 {
				continue tris
			}
			k := (j + 1) % 3
			if l := points[vj].Distance2D(points[vs[k]]); l > max {
				max = l
			}
		}
		lengths = append(lengths, max)
	}

	std := stat.StdDev(lengths, nil)
	return 3.5 * std
}

func (t *Triangulation) ConcaveHull(tooLong float64) (LineStringZ, map[int32]struct{}) {

	if tooLong <= 0 {
		tooLong = t.EstimateTooLong()
	}

	tooLong *= tooLong

	var candidates []int32

	points := t.Points

	for i, num := 0, len(t.Triangles)/3; i < num; i++ {
		idx := i * 3
		var max float64
		vs := t.Triangles[idx : idx+3]
		for j, vj := range vs {
			k := (j + 1) % 3
			if l := points[vj].SquaredDistance2D(points[vs[k]]); l > max {
				max = l
			}
		}
		if max > tooLong {
			candidates = append(candidates, int32(i))
		}
	}

	removed := map[int32]struct{}{}

	isBorder := func(n int32) bool {
		n *= 3
		for i := int32(0); i < 3; i++ {
			e := n + i
			o := t.Halfedges[e]
			if o < 0 {
				return true
			}
			if _, found := removed[o/3]; found {
				return true
			}
		}
		return false
	}

	var newCandidates []int32

	log.Printf("info: candidates: %d\n", len(candidates))
	for len(candidates) > 0 {

		oldRemoved := len(removed)

		for _, i := range candidates {

			if isBorder(i) {
				removed[i] = struct{}{}
			} else {
				newCandidates = append(newCandidates, i)
			}
		}

		if oldRemoved == len(removed) {
			break
		}

		candidates = newCandidates
		newCandidates = newCandidates[:0]
	}

	log.Printf("info: candidates left: %d\n", len(candidates))
	log.Printf("info: triangles: %d\n", len(t.Triangles)/3)
	log.Printf("info: triangles to remove: %d\n", len(removed))

	type edge struct {
		a, b       int32
		prev, next *edge
	}

	isClosed := func(e *edge) bool {
		for curr := e.next; curr != nil; curr = curr.next {
			if curr == e {
				return true
			}
		}
		return false
	}

	open := map[int32]*edge{}
	var rings []*edge

	for i, num := int32(0), int32(len(t.Triangles)/3); i < num; i++ {
		if _, found := removed[i]; found {
			continue
		}
		n := i * 3
		for j := int32(0); j < 3; j++ {
			e := n + j
			f := t.Halfedges[e]
			if f >= 0 {
				if _, found := removed[f/3]; !found {
					continue
				}
			}
			a := t.Triangles[e]
			b := t.Triangles[n+(j+1)%3]

			curr := &edge{a: a, b: b}

			if old := open[a]; old != nil {
				delete(open, a)
				if old.a == a {
					old.prev = curr
					curr.next = old
				} else {
					old.next = curr
					curr.prev = old
				}

				if isClosed(old) {
					rings = append(rings, old)
				}
			} else {
				open[a] = curr
			}

			if old := open[b]; old != nil {
				delete(open, b)
				if old.b == b {
					old.next = curr
					curr.prev = old
				} else {
					old.prev = curr
					curr.next = old
				}

				if isClosed(old) {
					rings = append(rings, old)
				}
			} else {
				open[b] = curr
			}
		}
	}

	if len(open) > 0 {
		log.Printf("warn: open vertices left: %d\n", len(open))
	}

	if len(rings) == 0 {
		log.Println("warn: no ring found")
		return nil, removed
	}

	curr := rings[0]

	polygon := LineStringZ{
		points[curr.a],
		points[curr.b],
	}

	for curr = curr.next; curr != rings[0]; curr = curr.next {
		polygon = append(polygon, points[curr.b])
	}

	polygon = append(polygon, t.Points[rings[0].a])

	log.Printf("length of boundary: %d\n", len(polygon))

	return polygon, removed
}

func (t *Triangulation) TriangleSlices() [][]int32 {
	sl := make([][]int32, len(t.Triangles)/3)
	var j int
	for i := range sl {
		sl[i] = t.Triangles[j : j+3]
		j += 3
	}
	return sl
}

func (t *Triangulation) Tin() *Tin {

	min := Vertex{math.MaxFloat64, math.MaxFloat64, math.MaxFloat64}
	max := Vertex{-math.MaxFloat64, -math.MaxFloat64, -math.MaxFloat64}

	vertices := t.Points

	for _, v := range vertices {
		min.Minimize(v)
		max.Maximize(v)
	}

	return &Tin{
		Vertices:  vertices,
		Triangles: t.TriangleSlices(),
		Min:       min,
		Max:       max,
	}
}

func (t *Triangulation) area() float64 {
	var result float64
	points := t.Points
	ts := t.Triangles
	for i := 0; i < len(ts); i += 3 {
		p0 := points[ts[i+0]]
		p1 := points[ts[i+1]]
		p2 := points[ts[i+2]]
		result += area(p0, p1, p2)
	}
	return result / 2
}

// Validate performs several sanity checks on the Triangulation to check for
// potential errors. Returns nil if no issues were found. You normally
// shouldn't need to call this function but it can be useful for debugging.
func (t *Triangulation) Validate() error {
	// verify halfedges
	for i1, i2 := range t.Halfedges {
		if i1 != -1 && t.Halfedges[i1] != i2 {
			return fmt.Errorf("invalid halfedge connection")
		}
		if i2 != -1 && t.Halfedges[i2] != int32(i1) {
			return fmt.Errorf("invalid halfedge connection")
		}
	}

	// verify convex hull area vs sum of triangle areas
	hull1 := t.ConvexHull
	hull2 := ConvexHull(t.Points)
	area1 := polygonArea(hull1)
	area2 := polygonArea(hull2)
	area3 := t.area()
	if math.Abs(area1-area2) > 1e-9 || math.Abs(area1-area3) > 1e-9 {
		return fmt.Errorf("hull areas disagree: %f, %f, %f", area1, area2, area3)
	}

	// verify convex hull perimeter
	perimeter1 := polygonPerimeter(hull1)
	perimeter2 := polygonPerimeter(hull2)
	if math.Abs(perimeter1-perimeter2) > 1e-9 {
		return fmt.Errorf("hull perimeters disagree: %f, %f", perimeter1, perimeter2)
	}

	return nil
}