view pkg/wkb/data.go @ 5095:e21cbb9768a2

Prevent duplicate fairway areas In principal, there can be only one or no fairway area at each point on the map. Since polygons from real data will often be topologically inexact, just disallow equal geometries. This will also help to avoid importing duplicates with concurrent imports, once the history of fairway dimensions will be preserved.
author Tom Gottfried <tom@intevation.de>
date Wed, 25 Mar 2020 18:10:02 +0100
parents 0ddb308fed37
children 1222b777f51f
line wrap: on
line source

// This is Free Software under GNU Affero General Public License v >= 3.0
// without warranty, see README.md and license for details.
//
// SPDX-License-Identifier: AGPL-3.0-or-later
// License-Filename: LICENSES/AGPL-3.0.txt
//
// Copyright (C) 2019 by via donau
//   – Österreichische Wasserstraßen-Gesellschaft mbH
// Software engineering by Intevation GmbH
//
// Author(s):
//  * Sascha L. Teichmann <sascha.teichmann@intevation.de>

package wkb

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"math"
)

type (
	PointGeom struct {
		X float64
		Y float64
	}
	LinearRingGeom   []PointGeom
	PolygonGeom      []LinearRingGeom
	MultiPolygonGeom []PolygonGeom
)

func (mpg MultiPolygonGeom) AsWKB() []byte {

	size := 1 + 4 + 4
	for _, pg := range mpg {
		size += 1 + 4 + 4
		for _, r := range pg {
			size += 4 + 2*8*len(r)
		}
	}

	buf := bytes.NewBuffer(make([]byte, 0, size))

	binary.Write(buf, binary.LittleEndian, NDR)
	binary.Write(buf, binary.LittleEndian, MultiPolygon)
	binary.Write(buf, binary.LittleEndian, uint32(len(mpg)))

	for _, pg := range mpg {
		binary.Write(buf, binary.LittleEndian, NDR)
		binary.Write(buf, binary.LittleEndian, Polygon)
		binary.Write(buf, binary.LittleEndian, uint32(len(pg)))

		for _, r := range pg {
			binary.Write(buf, binary.LittleEndian, uint32(len(r)))
			for _, p := range r {
				x := math.Float64bits(p.X)
				y := math.Float64bits(p.Y)
				binary.Write(buf, binary.LittleEndian, x)
				binary.Write(buf, binary.LittleEndian, y)
			}
		}
	}

	return buf.Bytes()
}

func (mpg *MultiPolygonGeom) FromWKB(data []byte) error {
	r := bytes.NewReader(data)

	var order binary.ByteOrder

	switch endian, err := r.ReadByte(); {
	case err != nil:
		return err
	case endian == NDR:
		order = binary.LittleEndian
	case endian == XDR:
		order = binary.BigEndian
	default:
		return fmt.Errorf("unknown byte order %x", endian)
	}

	var geomType uint32

	switch err := binary.Read(r, order, &geomType); {
	case err != nil:
		return err
	case geomType != MultiPolygon:
		return fmt.Errorf("unknown geometry type %x", geomType)
	}

	var numPolygons uint32
	if err := binary.Read(r, order, &numPolygons); err != nil {
		return err
	}

	polygons := make([]PolygonGeom, numPolygons)

	for i := range polygons {
		switch endian, err := r.ReadByte(); {
		case err != nil:
			return err
		case endian == NDR:
			order = binary.LittleEndian
		case endian == XDR:
			order = binary.BigEndian
		default:
			return fmt.Errorf("unknown byte order %x", endian)
		}

		switch err := binary.Read(r, order, &geomType); {
		case err != nil:
			return err
		case geomType != Polygon:
			return fmt.Errorf("unknown geometry type %x", geomType)
		}

		var numRings uint32
		if err := binary.Read(r, order, &numRings); err != nil {
			return err
		}

		rings := make([]LinearRingGeom, numRings)

		for j := range rings {
			var numPoints uint32
			if err := binary.Read(r, order, &numPoints); err != nil {
				return err
			}
			points := make([]PointGeom, numPoints)

			for k := range points {
				var x, y uint64
				if err := binary.Read(r, order, &x); err != nil {
					return err
				}
				if err := binary.Read(r, order, &y); err != nil {
					return err
				}
				points[k] = PointGeom{
					X: math.Float64frombits(x),
					Y: math.Float64frombits(y),
				}
			}
			rings[j] = points
		}
		polygons[i] = rings
	}

	*mpg = polygons
	return nil
}

func (lr LinearRingGeom) CCW() bool {
	var sum float64
	for i, v1 := range lr {
		v2 := lr[(i+1)%len(lr)]
		sum += (v2.X - v1.X) * (v2.Y + v1.Y)
	}
	return sum > 0
}

func (lr LinearRingGeom) Reverse() {
	for i, j := 0, len(lr)-1; i < j; i, j = i+1, j-1 {
		lr[i], lr[j] = lr[j], lr[i]
	}
}