view pkg/imports/wkb.go @ 2130:f3aabc05f9b2

Fix constraints on waterway profiles staging_done in the UNIQUE constraint had no effect, because the exclusion constraint prevented two rows with equal location and validity anyhow. Adding staging_done to the exclusion constraint makes the UNIQUE constraint checking only a corner case of what the exclusion constraint checks. Thus, remove the UNIQUE constraint. Casting staging_done to int is needed because there is no appropriate operator class for booleans. Casting to smallint or even bit would have been better (i.e. should result in smaller index size), but that would have required creating such a CAST, in addition.
author Tom Gottfried <tom@intevation.de>
date Wed, 06 Feb 2019 15:42:32 +0100
parents f54ac71db1ac
children 63475c8e710e
line wrap: on
line source

// This is Free Software under GNU Affero General Public License v >= 3.0
// without warranty, see README.md and license for details.
//
// SPDX-License-Identifier: AGPL-3.0-or-later
// License-Filename: LICENSES/AGPL-3.0.txt
//
// Copyright (C) 2018 by via donau
//   – Österreichische Wasserstraßen-Gesellschaft mbH
// Software engineering by Intevation GmbH
//
// Author(s):
//  * Sascha L. Teichmann <sascha.teichmann@intevation.de>

package imports

import (
	"bytes"
	"encoding/binary"
	"fmt"
	"math"

	shp "github.com/jonas-p/go-shp"
)

type (
	pointSlice   []float64
	lineSlice    [][]float64
	polygonSlice [][][]float64
)

const (
	wkbNDR byte = 1

	wkbPoint      uint32 = 1
	wkbLineString uint32 = 2
	wkbPolygon    uint32 = 3
)

func (l lineSlice) asWKB() []byte {

	size := 1 + 4 + 4 + len(l)*(2*8)

	buf := bytes.NewBuffer(make([]byte, 0, size))

	binary.Write(buf, binary.LittleEndian, wkbNDR)
	binary.Write(buf, binary.LittleEndian, wkbLineString)
	binary.Write(buf, binary.LittleEndian, uint32(len(l)))

	for _, c := range l {
		var lat, lon float64
		if len(c) > 0 {
			lat = c[0]
		}
		if len(c) > 1 {
			lon = c[1]
		}
		binary.Write(buf, binary.LittleEndian, math.Float64bits(lat))
		binary.Write(buf, binary.LittleEndian, math.Float64bits(lon))
	}

	return buf.Bytes()
}

func (p pointSlice) asWKB() []byte {

	size := 1 + 4 + 2*8

	buf := bytes.NewBuffer(make([]byte, 0, size))

	binary.Write(buf, binary.LittleEndian, wkbNDR)
	binary.Write(buf, binary.LittleEndian, wkbPoint)

	var lat, lon float64
	if len(p) > 0 {
		lat = p[0]
	}
	if len(p) > 1 {
		lon = p[1]
	}
	binary.Write(buf, binary.LittleEndian, math.Float64bits(lat))
	binary.Write(buf, binary.LittleEndian, math.Float64bits(lon))

	return buf.Bytes()
}

func (p polygonSlice) asWKB() []byte {
	if p == nil {
		return nil
	}
	// pre-calculate size to avoid reallocations.
	size := 1 + 4 + 4
	for _, ring := range p {
		size += 4 + len(ring)*2*8
	}

	buf := bytes.NewBuffer(make([]byte, 0, size))

	binary.Write(buf, binary.LittleEndian, wkbNDR)
	binary.Write(buf, binary.LittleEndian, wkbPolygon)
	binary.Write(buf, binary.LittleEndian, uint32(len(p)))

	for _, ring := range p {
		binary.Write(buf, binary.LittleEndian, uint32(len(ring)))
		for _, v := range ring {
			var lat, lon float64
			if len(v) > 0 {
				lat = v[0]
			}
			if len(v) > 1 {
				lon = v[1]
			}
			binary.Write(buf, binary.LittleEndian, math.Float64bits(lat))
			binary.Write(buf, binary.LittleEndian, math.Float64bits(lon))
		}
	}

	return buf.Bytes()
}

func shapeToPolygon(s shp.Shape) (polygonSlice, error) {
	switch p := s.(type) {
	case *shp.Polygon:
		return toPolygon(p.NumParts, p.Parts, p.Points), nil
	case *shp.PolygonZ:
		return toPolygon(p.NumParts, p.Parts, p.Points), nil
	case *shp.PolygonM:
		return toPolygon(p.NumParts, p.Parts, p.Points), nil
	}
	return nil, fmt.Errorf("Unsupported shape type %T", s)
}

func toPolygon(numParts int32, parts []int32, points []shp.Point) polygonSlice {
	out := make(polygonSlice, numParts)
	var pos int32

	for i := range out {
		var howMany int32
		if i+1 >= len(parts) {
			howMany = int32(len(points)) - pos
		} else {
			howMany = parts[i+1] - parts[i]
		}

		line := make([][]float64, howMany)
		vertices := make([]float64, 2*howMany)
		for j := int32(0); j < howMany; j, pos = j+1, pos+1 {
			p := &points[pos]
			vertex := vertices[j*2 : j*2+2]
			vertex[0], vertex[1] = p.X, p.Y
			line[j] = vertex
		}
		out[i] = line
	}
	return out
}