view pkg/octree/builder.go @ 2130:f3aabc05f9b2

Fix constraints on waterway profiles staging_done in the UNIQUE constraint had no effect, because the exclusion constraint prevented two rows with equal location and validity anyhow. Adding staging_done to the exclusion constraint makes the UNIQUE constraint checking only a corner case of what the exclusion constraint checks. Thus, remove the UNIQUE constraint. Casting staging_done to int is needed because there is no appropriate operator class for booleans. Casting to smallint or even bit would have been better (i.e. should result in smaller index size), but that would have required creating such a CAST, in addition.
author Tom Gottfried <tom@intevation.de>
date Wed, 06 Feb 2019 15:42:32 +0100
parents de09bd3b5c05
children f3a9e125f630
line wrap: on
line source

// This is Free Software under GNU Affero General Public License v >= 3.0
// without warranty, see README.md and license for details.
//
// SPDX-License-Identifier: AGPL-3.0-or-later
// License-Filename: LICENSES/AGPL-3.0.txt
//
// Copyright (C) 2018 by via donau
//   – Österreichische Wasserstraßen-Gesellschaft mbH
// Software engineering by Intevation GmbH
//
// Author(s):
//  * Sascha L. Teichmann <sascha.teichmann@intevation.de>

package octree

import (
	"bytes"
	"encoding/binary"
	"io"
	"log"

	"github.com/golang/snappy"
)

// Builder is used to turn a TIN into an Octree.
type Builder struct {
	t      *Tin
	nodes  int
	leaves int
	index  []int32
}

var cubes = [8][2]Vertex{
	makeCube(0),
	makeCube(1),
	makeCube(2),
	makeCube(3),
	makeCube(4),
	makeCube(5),
	makeCube(6),
	makeCube(7),
}

func makeCube(i int) [2]Vertex {
	var d Vertex
	if i&1 == 1 {
		d.X = 0.5
	}
	if i&2 == 2 {
		d.Y = 0.5
	}
	if i&4 == 4 {
		d.Z = 0.5
	}
	return [2]Vertex{
		Vertex{0.0, 0.0, 0.0}.Add(d),
		Vertex{0.5, 0.5, 0.5}.Add(d),
	}
}

// NewBuilder creates a new Builder for a TIN.
func NewBuilder(t *Tin) *Builder {
	return &Builder{t: t}
}

// Build builds the Octree.
func (tb *Builder) Build() {

	triangles := make([]int32, len(tb.t.Triangles))
	for i := range triangles {
		triangles[i] = int32(i)
	}

	tb.index = append(tb.index, 0)

	tb.buildRecursive(triangles, tb.t.Min, tb.t.Max, 0)
	tb.index[0] = int32(len(tb.index))
	log.Printf("info: num nodes: %d\n", tb.index[0])

	log.Printf("info: nodes: %d leaves: %d index %d\n",
		tb.nodes, tb.leaves, tb.index[0])
}

func (tb *Builder) buildRecursive(
	triangles []int32,
	min, max Vertex,
	depth int,
) int32 {
	if len(triangles) <= 16 || depth > 8 {
		pos := len(tb.index)
		tb.index = append(tb.index, int32(len(triangles)))
		tb.index = append(tb.index, triangles...)
		//log.Printf("leaf entries: %d (%d)\n", len(triangles), depth)
		tb.leaves++
		return int32(-(pos + 1))
	}

	pos := len(tb.index)
	tb.index = append(tb.index,
		0, 0, 0, 0,
		0, 0, 0, 0)

	bbox := Interpolate(min, max)

	bboxes := make([][2]Vertex, len(cubes))

	for i := range cubes {
		bboxes[i] = [2]Vertex{
			bbox(cubes[i][0]),
			bbox(cubes[i][1]),
		}
	}

	var quandrants [8][]int32

	for _, tri := range triangles {
		triangle := tb.t.Triangles[tri]
		v0 := tb.t.Vertices[triangle[0]]
		v1 := tb.t.Vertices[triangle[1]]
		v2 := tb.t.Vertices[triangle[2]]

		l := v0
		l.Minimize(v1)
		l.Minimize(v2)

		h := v0
		h.Maximize(v1)
		h.Maximize(v2)

		for i := range bboxes {
			if !(h.Less(bboxes[i][0]) || bboxes[i][1].Less(l)) {
				quandrants[i] = append(quandrants[i], tri)
			}
		}
	}

	for i := range quandrants {
		if len(quandrants[i]) > 0 {
			child := tb.buildRecursive(
				quandrants[i],
				bboxes[i][0], bboxes[i][1],
				depth+1)
			tb.index[pos+i] = child
		}
	}
	tb.nodes++
	return int32(pos)
}

func (tb *Builder) serialize(w io.Writer) error {
	var buf [binary.MaxVarintLen32]byte

	if err := binary.Write(w, binary.LittleEndian, tb.index[0]); err != nil {
		return err
	}

	var last int32
	var written int

	for _, x := range tb.index[1:] {
		delta := x - last
		n := binary.PutVarint(buf[:], int64(delta))
		for p := buf[:n]; len(p) > 0; p = p[n:] {
			var err error
			if n, err = w.Write(p); err != nil {
				return err
			}
			written += n
		}

		last = x
	}
	log.Printf("info: compressed octree index in bytes: %d (%d)\n",
		written, 4*len(tb.index))

	return nil
}

func (tb *Builder) writeTo(w io.Writer) error {
	out := snappy.NewBufferedWriter(w)
	if err := tb.t.serialize(out); err != nil {
		return err
	}
	if err := tb.serialize(out); err != nil {
		return err
	}
	return out.Flush()
}

// Bytes serializes an Octree into a byte slice.
func (tb *Builder) Bytes() ([]byte, error) {
	var buf bytes.Buffer
	if err := tb.writeTo(&buf); err != nil {
		return nil, err
	}
	return buf.Bytes(), nil
}

// Tree returns an Octree from the Builder.
func (tb *Builder) Tree() *Tree {
	return &Tree{
		EPSG:      tb.t.EPSG,
		vertices:  tb.t.Vertices,
		triangles: tb.t.Triangles,
		index:     tb.index,
		Min:       tb.t.Min,
		Max:       tb.t.Max,
	}
}